2006 Al. (a) a=-2 or 1 (5) A-1= (a+2)(a+1)2 (1-a) a2-1 1-a) \$2. K=W2Y*/(r+w)2 L= r2Y*/(r+w)2 3. (a) x=2 y=1 4 (a)-a/2x2-b/x+chx (b) 1/4 (c) (x2-2x+2)ex 5. (a) q=4 p=28 T=14 (b) q=0 6. (a)(i) $\frac{7}{1} \times -2e^{2x}/(e^{2x}+1)$ (ii) $\frac{1}{5}(x+4)^{4/5}(x-5)^{4/5}(5x+1)$ (b) $\frac{3}{6} \times = (3x^2 - 6y)(x-2y)^2 + 2(x^3 - 6xy+y)(x-2y)$ $\frac{3}{6} \times = (-6x-1)(x-2y)^2 - 4(x^3 - 6xy+y)(x-2y)$ B1.(a) X=15+15 Py y=5+5ex (600(61/4,61/4)/11)(4/6,25) (C)0(114,3314) (i) (-916,15) Px/py >6 (e) Px/py>6 26)Y = [b(m-16)+(6-cT+I6+G)h]/[h(1-c)+kb] (d) $f(r) = \frac{3}{2}r_0^{-1/2} - \frac{1}{2}rr_0^{-3/2}$ so $M^d = kY + \frac{3}{2}r_0^{-1/2} - \frac{9}{2}r_0^{-3/2}$ frocal policy multiple = ato 3/2/2 and trap to 1. ar=3/2(1-c)/2+kb C1. (a) A. b/(a-b) B.b/(a+b) C.b 2. (a)(i) 0.012 (ii) 0.712 (iii) 0.164 (b) 0.493 3. (a) WE (1-TE) is proportional to PE (bxi)Ho(b=1) not rejected us H, (b +1) == -0.13 crit==1.96 Ho(a=0) rejected us H, (a>0) == 30 ort==+1.46 So there is evidence to real wage resistance hypothesis (ii) Ho (b=0) not rejected us the (b×0) Z=1.5 (iii) Std error in b is too big to conclude anything here— 4. (a) (i) ~ 8.2 (ii) ~ 66.5 (b) 462 lus (c) 598 lus (e) 0. 10±.05 6. Ho (proportions equal) rejected as = 3.57 Ho (TI,-TIZ = 0.2) not rejected as = 0.735 5.600 9 (ii) 52 D1. (b) I'd use n(i/00) - 1 where i= usex n= no-of years (c) r=0.85 t=4.6 clearly significant. 2. (a) $\Gamma=0.5$ t=2.02. Problem: they've not indicated the afternative hypothesis. If it is pato then test is 2-tailed, and critical tip 2.179, so so not reject the of no correll and critical tip 2.179, so then test is 1-tailed, and critical tip 1.782, If it is pao then test is 1-tailed, and critical tip 1.782, If it is pao then test is 1-tailed, and critical tip 1.782, If it is pao then test is 1-tailed. so now we do reject the of no correl! Suspect 2-tailed is correct and a sourced so for (b)

(b) t=1.09 critical t=2.056 f2-tailed for y=26 do not report (c) Carada [= -0.90 = 7.0 UK = -0.55 = -2.3 reject to (thil)

```
A1. -
           2. (a) x_n = \frac{a}{1-b} + b^n \left(\frac{1-b-q}{1-b}\right) (b) b = -1 unstable 16/< 1 stable
see (a): 3. (a) q=9/2 (b) 9/2-1 (c) 9=2(9-106)/(4+6)=4
          4. (a) \frac{1}{3}x^3\ln x - x^3/4 + c (b) -2(3x+1)^{3/2} + \frac{2}{45}(3x+1)^{5/2} = \frac{2}{9}(3x+1)^{3/2} - \frac{4}{135}(3x+1)^{5/2}
          5. (a) constant (b) Y_L = A \times L^{-\gamma - 1} (\alpha L^{-\gamma} + \beta K^{-\gamma})^{-\gamma - 1} = te (c/\partial L) = -\beta (K)^{-\gamma - 1}

6. (a) \partial t/\partial x = \frac{1}{6} x^{-2/3} (x'^3 + y^{2/3})^{-1/2} \partial t/\partial y = \frac{1}{3} y^{-1/3} (x'^3 + y^{2/3})^{-1/2}
               (b) 50 x24 - 24x23 (n(x2+ex) - x24 (2x+ex)/(x2+ex)
see B1 (c) Y=[B(C+I+G)+bMs]/[B(1-c-a+E(c-1))+ab]
                   r=[x(c+1+G)-Ms(1-c-a+E(c-1))]/[B(1-c-a+E(c-1))+xb]
below
        2 (a) x = 3B/Spx y = 2B/Spy (b) x = 5 y = 4 x = 160
(c) u = 1.267, 1.283 increase of 0.0165, ie ~ x.
       Cl. (a) - (b) f2 (c) 26,36 (d) 0,1.
         2. r=0.073,95% CI is -0.52 60 0.62
          4. (a) Stoev = 6.4 (assuming > 30 class is not a problem: 1 treated as = 33)
          3. (a) · 0. 1587 (b) 0.532
          5. (a) Do not reject ( = 0.94, critical t = 2.145)
          6. (a) 99%, no (b) t=0.5 so do not reject to (B=1).
```

D1. (a) - (b) $y_i = x + \beta x_i + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$, $\sigma^2 i \partial \epsilon_i \rho$. of x.

(c) $\mathbf{s} = 58 \cdot 2 - 0.3355$ $R^2 = 0.88$ E = 5.32 so statiotically significant (critical E is 2.776) $\hat{E}(40) = 44 \cdot 8$ $\hat{E}(0) = 58 \cdot 2$ significant (critical E is 2.776) $\hat{E}(40) = 44 \cdot 8$ $\hat{E}(0) = 58 \cdot 2$ 170 plot the graph if (were your (always))

170 plot the graph if (were your (always))

2. (a) - (b) $NY_E = NZ_E + S_E + R_E$ in $N(1/2) = S_E + R_E$.

(c) $\hat{S}_i = -0.099$ $\hat{S}_i = -0.064$ $\hat{S}_j = 0.005$ $\hat{S}_4 = 0.158$ (d) $\hat{K} = 8.16$ $\hat{B} = 0.02$ $\hat{Y}_i = -0.257$ $\hat{Y}_i = -0.222$ $\hat{Y}_j = -0.153$ (e) so in (d), asside from the rounding.

Note to B1: The question as stated gives the determinant to be -B(1-c-a+t(c-1)-xb), which could be positive or negative. I suspect question should have said a+c+tc/, not a+c

Note to \$A3: you'd get 1-9/2 for (b) if you define price elasticity as pdg rather than - pdg.

A1. —

2. (a) L =160 (b) L == 120

3.(a) i'L = (2) ii' = (1) (b) Q = 200 matrix

4. x* = ma/px y* = m(1-a)/py x* = (a) (1-a) (1-a) in = in

5. (a) Y=375 R=5 (b) d4/d6=15/8

6. y=x-1

B1. (a) a-bp==-c+pe (b) bp=+(+++6-6)p=-1=(a+c)+1) (c) p# = (a+c)((1+b) (d) stable if M 2 26/(1+b) (e) growth oscilla

2.(a) Q1=47 Q2=37 P1=53 P2=43 (b),50 (c)-(d)t=47 (e) (assuming 8 is a cost per unit you carry on plane (?!)) then Q1=48 Q2=36 P1=52 P2=44

C1. Assuming idividual bills are Normal, test stat = 2-36; critical t to 1.833. So reject to and conclude mean level of billing is excess of £17.10

3. (a) (1+5)/36 (b) 7/12 (c) 125/3888

4. -

6. (a) 0.33 6 0.47 (b) Z=1.49; critical Z=1.96, 50 00 not reject mult hypothesis of no difference

DI. (a) N(0,02) (b)(i) shouldn't happen (mean \$0)(ii) variance varies with me (C)(ii) 0.45 6 1.02 (iii) extrapolation gives 64.0, except relation to not linear, eso it's a daft prodiction (iv) bethe so (V) 1: (29.29, -9.29) 2: (32.98, -2.98) 8: (55.12, -0.12)

9. (58.81, -2.81)10. (62.5, -6.5)

2. (a) College A: 56,65,56,251, 15.8 comage B: 61,63,61,433,6.6

(c) Assume individuals mashs are Normal voriances equal (F-test gives 5.8, of withcal F of 5.82; so Ho (variances equal) test statistic = -0.77, withcal = 2.179

So do not reject to (nears equal).

(d) Uh? Normal approx does not hold for such small samples. and (F) If we assume proportions equal than pooled estimate of p=4/14

* then one cando Bironial catchs (??) (e) New mean for college A is 63.6. uncleas what is wanted seyord

A1. -

2. £30.

3. (a)
$$R_t = (1 - f - s)R^* + s$$
; 15%; (b) 11.715%; two periods.

4. (a)
$$f(t) = 36.5 + 1.7t - 0.875t^2$$
; (b) $t = 6 - G$ ie $t = 4$, so a decrease of 1.

B1. (a)
$$Y(1-c(1-t)-a-\theta t)+br=\bar{C}+\bar{I}+\bar{G} \text{ and } \alpha Y-\beta r=M_s; \text{ (b) } Y=\frac{\bar{G}}{(1-\theta)t};$$

(c)
$$-\beta(1-c(1-t)-a-\theta t) - \alpha b$$
; (d) $Y = \frac{\beta(\bar{c}+\bar{l}+\bar{G})+bM_s}{\beta(1-c(1-t)-a-\theta t)+\alpha b'}$

 $r=\frac{\alpha(\bar{c}+\bar{l}+\bar{G})-M_S(1-c(1-t)-a-\theta t)}{\beta(1-c(1-t)-a-\theta t)+\alpha b}; r \text{ increases with } \bar{G} \text{, and the impact gets larger as } \theta \text{ increases}.$

2. (b)
$$x^* = \frac{1}{3p_x}(2m + Ap_x); y^* = \frac{1}{3p_x}(m - Ap_x);$$
 (c) $\lambda = \frac{4}{9p_x}(\frac{m}{p_x} - A)^2;$

(d)
$$\frac{\partial x^*}{\partial A} = \frac{p_y y^* - (x^* - A) p_x}{p_y y^* - 2(x^* - A) p_x} = \frac{1}{3}$$
.

C1. (a) all except (ii); (b) (ii) 0.75; (iii) 27/28.

2. (d) do not reject null hypothesis (sample t = 2; critical t = 2.080); (e) -0.01 to 0.70.

3. (a) No; (b)
$$n_A = 124$$
; $n_B = 62$; $p_A = 0.45$; $p_B = 0.3$.

4. (b) (iii) 0.36.

D1. (b) (ii) V(X - Y) = V(X + Y) = V(X) + V(Y); (c) (i) No difference between restaurants (sample t = 0.45); sample F = 1.11 so variances could be equal; (c) (ii) There is a difference between restaurants (sample t=8.5).

2. (b) (i)
$$a = -0.5$$
; $b = 0.3$; (ii) -0.2 ; 2.5; (c) (i) $c = 5/3$; $d = 10/3$; (ii) $c = 2$; $d = 3$.

A1. (a)
$$f(x) = x_0^{\frac{1}{2}} + \frac{(x - x_0)x_0^{-\frac{1}{2}}}{2} - \frac{(x - x_0)^2 x_0^{-\frac{3}{2}}}{8}$$
.

2. (a)
$$A^{-1} = \frac{1}{2+5\alpha} \begin{bmatrix} 2 & 5 \\ \alpha & -1 \end{bmatrix}$$
; singular if $\alpha = -\frac{2}{5}$; (b) $PBP' = \begin{bmatrix} \theta/2 & 0 \\ 0 & 3\theta/2 \end{bmatrix}$.

- 3. (b) $w = 1/\theta$.
- 4. (a) 800 + 0.15S if S < 10000, 1800 + 0.15S if 10000 < S < 15000, 4300 + 0.15S if S > 15000; (b) S = 10000, 15000.

B5. (a)
$$\mathcal{L} = 10t_1^{1/2} + \frac{3}{2}t_2 - 30 - \lambda(t_1 + t_2 - 60); t_1 = 11.1, t_2 = 48.9, g_1 = 86.6, g_2 = 66.7.$$

6. (a)
$$\dot{Y} + \alpha (1 + \frac{lk}{h} - b)Y = \alpha (a + l\overline{M}/h + \overline{I} + \overline{G});$$

(b)
$$Y = \frac{a + \frac{l\overline{M}}{h} + \overline{l} + \overline{G}}{1 + \frac{lk}{h} - b} + (Y_0 - \frac{a + \frac{l\overline{M}}{h} + \overline{l} + \overline{G}}{1 + \frac{lk}{h} - b})e^{-\alpha(1 + \frac{lk}{h} - b)t}$$
; (c) $\frac{a + \frac{l\overline{M}}{h} + \overline{l} + \overline{G}}{1 + \frac{lk}{h} - b}$; (d) stable iff $1 + \frac{lk}{h} - b > 0$.

- C7. (a)almost 0.5; (b) 0.58; (c) 0.896.
- 8. (a) (i) constant variance; (iv) horizontal line, with random noise above and below; (b) hypothesis $\delta=0$ would not be rejected.

9. (a) (i) 1/3; (ii) 13/14; (b) (i)
$$\frac{X\beta_2}{\beta_1+\beta_2X}$$
; β_2 ; $\frac{-\beta_2}{X(\beta_1+\beta_2X)}$; $\frac{\beta_2}{\beta_1+\beta_2X}$; (ii) 4.

- 10. (a) 96.04, so 97 (b) Z=24.6, based on variance of 2400 (tricky to know if one should use 2400 or 2500, though conclusion would be the same); (c) Z=1.60; critical one tailed Z is 1.645, so do not (quite) reject H_0 .
- D11. (a) TCs are 77465, 77810, ..., 81310, 80874; (b) (i)-1860.8, 944.8, 1668, -752, which add to zero; (iv) 329.6, 543.0; (v) t = 2.55, critical t is 2.306 so reject hypothesis of equality; (vi) F = 2.71, critical F is 9.605, so do not reject hypothesis of equality of variances.
- 12. (a) (ii) mean=14, var=304; (b) (i) 0.6; (ii) 0.5392; (iii) 2.