A1. (i)
$$-1 \le x \le 1$$
; (ii) $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}}$.
2. (i) $\begin{bmatrix} \alpha(\alpha - 1)K^{\alpha - 2}\ln(L + \beta) & \alpha K^{\alpha - 1}(L + \beta)^{-1} \\ \alpha K^{\alpha - 1}(L + \beta)^{-1} & -K^{\alpha}(L + \beta)^{-2} \end{bmatrix}$.
3. (i) $\alpha\beta \ne 3$; (ii) $-\sqrt{2} < \theta < \sqrt{2}$.
4. (i) $y = 500e^{-\alpha t}$; (ii) 6.93.

B5. (i) $\frac{\partial u}{\partial x} = 1 + 2\sqrt{\frac{y}{x}}, \frac{\partial u}{\partial y} = 2\left(\sqrt{\frac{x}{y}} + 2\right)$; (ii) $1 + 2\sqrt{\frac{y}{x}} = 3\lambda, \sqrt{\frac{x}{y}} + 2 = 3\lambda, 3x + 6y = 30$; (iii) $(x, y) = \left(\frac{10}{3}, \frac{10}{3}\right)$; you might also get $\left(\frac{20}{3}, \frac{5}{3}\right)$ but that does not solve the first order equations unless you take the square roots that appear at various points as negative.

6. (i)
$$\begin{bmatrix} 1 - c - a + ct & b \\ \alpha & -\beta \end{bmatrix} \begin{bmatrix} Y \\ r \end{bmatrix} = \begin{bmatrix} \overline{C} + \overline{I} + \overline{G} \\ M_s \end{bmatrix}$$
; (ii) $-\beta(1 - c - a + ct) - \alpha b$
(iii) $Y = \frac{\beta(\overline{C} + \overline{I} + \overline{G}) + bM_s}{\beta(1 - c - a + ct) + \alpha b}$, $r = \frac{\alpha(\overline{C} + \overline{I} + \overline{G}) - (1 - c - a + ct)M_s}{\beta(1 - c - a + ct) + \alpha b}$; $\frac{\partial r}{\partial \overline{I}} = \frac{\alpha \overline{I}}{\beta(1 - c - a + ct) + \alpha b}$, so r falls when \overline{I} falls; (iv) β/b .

C7. (a) results are significant: sample is 1.98 stdevs from mean, critical one tailed value is 1.645; (b) sample statistic is 1.543, claim is supported at 10% (critical 1.282) but not 5% (critical 1.645).

8. (a) -2; (b) N=81.

9. (a) $\alpha = 8.59, \beta = 0.606$; (b) 21; (c) 389.

10. -

D11. (c) It appears the assumption is $\lambda = 1$, with their $\Delta \pi_t$ being $\pi_t - \pi_{t-1}$; (d) $\mu_0 = 6.91$; (e) $\mu_0 = 6.91$, 7.23; (f) Assuming we use $t_{35} = 2.03$ rather than 1.96 standard deviations then 7.3 \pm 3.1, actual value of 12% is 1.56 stdevs above expected, so still plausible.

12. (a) 8; (c) E(X) = E(Y) = 1, $E(XY) = \frac{5}{4}$; $Covar = \frac{1}{4}$; (d) $E(X|Y = 2) = \frac{3}{2}$, $var(X|Y = 2) = \frac{1}{4}$.

<u>2011</u>

A1. (a) $\alpha \ge 0$ apart from $\alpha = 1$ where fn is not defined; (b) $U = \ln w + c$; (c) 12.

2. (a)
$$x = 1, y = 0, U = 1$$
; (b) $x = 4, y = 17, z = 3, U = \frac{25}{4} + \ln 4$.

3. (a) Det is $15 + 2\alpha$. For **A** to be positive definite: if you say non-symmetric matrices can't be positive definite then $\alpha = -2$, if you apply the determinant test anyway then $\alpha > -\frac{15}{2}$, if you apply a more sophisticated test (beyond the scope of the course) for $x^T A x > 0$ then $2 - \sqrt{60} < \alpha < 2 + \sqrt{60}$; (b) Yes.

4. (a)
$$\ln x = (x - 1) - \frac{(x - 1)^2}{2}$$
; (b) Yes; (c) $y(t) = t^2 - t$.

B5. (a) Invest entirely in asset with largest expected return;

(c) $\delta^* = 0.348$, $\frac{\partial \delta^*}{\partial \sigma_2^2} = \frac{(1-\delta^*)}{\sigma_1^2 + \sigma_2^2 - 2\sigma_{12}}$; asset 2 is becoming more risky and our utility fn says we do not like that.

6. (a)
$$Q = 50\frac{2}{3}, \pi_D = \pi_F = 80.2$$
; (b) $\pi_i = \frac{(100 - q_i - (n-1)\overline{q})q_i}{8} - 3q_i$;
(c) $p = 12.5 - \frac{76n}{8(n+1)}, \pi_i = \frac{722}{(n+1)^2}, \text{ as } n \to \infty, p \to 3, \pi_i \to 0.$

C7. (a) 0.52; (b) 49/52; (c) 9/16.

8. (a)
$$c_1 = -3$$
, $c_2 = 2$; (b) $x < 0$: $0, 0 \le x \le 1$: $2x - x^3$, $x > 1$: 1; (c) 1/8.

9. I've assumed sample is large enough to approximate the t-distribution t=1.711 by the Normal distribution Z=1.645. That's actually somewhat approximate. (a) critical y is 9.1775; (b) $\mu =$ 9: 0.64, $\mu = 10$: 0.05, $\mu = 11$: 0.0001; (c) power will increase when $\mu = 9$, be unchanged when $\mu = 10$, and decrease when $\mu = 11$.

10. (b) sample Z = 1, critical Z = 1.96, do not reject H_0 ; (c) 1.015 ± 0.029 .

D11. (a) $E(X) = \frac{\theta}{2}$, $Var(X) = \frac{\theta^2}{12}$; (b) No, unbiased estimator is *twice* the sample mean; (c) $\hat{\theta} = 2\bar{x}$ is consistent; (d) Variance of smaller sample is twice that of the larger sample, so you'd prefer the larger sample.

12. (d) \$25k; (e)
$$H_0: \beta_0 = 0, H_1: \beta_0 \neq 0$$
, sample Z=-0.92, critical Z=1.96, do not reject H_0 .

<u>2012</u>

A1. (a) convex; (b) neither concave nor convex.

2. (a)
$$c_1 = 1/(1+\beta^{3/2})$$
, $c_2 = \beta^{3/2}/(1+\beta^{3/2})$; (b) $c_1 = 0.74$, $c_2 = 0.26$, $z = 0$, $u = 1.17$.
3. (a) $\begin{pmatrix} 4 & 4 \\ 4 & y^2 \end{pmatrix}$, det = $4y^2 - 16$; (b) $(0,0)$ saddle, $\pm(\sqrt{12}, -\sqrt{12})$ minima.
4. (a) $1+3x+\frac{9}{2}x^2$; (b) If you take terms up to and including the one in $(x-1)^n$ at the $x=0.5$ end (where the convergence is slowest), and use the Remainder Theorem, you'll get $1/(n+1)<0.05$ and hence $n>19$, but the Remainder Theorem is extremely cautious; if one instead just calculates a sequence of approximations from taking $1,2,3...$ terms in the series, you will see that we need only terms up to $(x-1)^3$, so in that case $(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3}$;

(c)
$$4 + \frac{3}{4}(x-3) + \frac{21}{8}(y-1)$$
.
B5. (a)
$$\begin{cases} Q=40-2p & 0 \le p \le 15\\ Q=25-p & 15 \le p \le 25 \end{cases}$$
;
 $Q=0 & p \ge 25 \end{cases}$
(b)
$$\begin{cases} q_D=15-\frac{\alpha}{2}, q_F=5-\frac{\alpha}{2}, p=10+\frac{\alpha}{2}, \pi=(10-\alpha/2)(20-\alpha) & 0 \le \alpha \le 7.93\\ q_D=\frac{25-\alpha}{2}, q_F=0, p=\frac{25+\alpha}{2}, \pi=\left(\frac{25-\alpha}{2}\right)^2 & 7.93 \le \alpha \le 25 \end{cases}$$
;
(c) $\frac{d\pi}{d\alpha}=-7.5$; (d) $q_D=14, q_F=4, p=11, \pi=18$, so profits down from 56.25 in (b).

6. (a) $x_t = 10 + 1.05 x_{t-1}$; (b) $x_t = -200 + (1.05)^{t-2000}(210)$; (c) a = 0.9, b = 5, $y^* = 50$, y_t will converge; (d) $y_t = 0.85 y_{t-1} + 10/3$, $y^* = 22.2$, still converges.

- C7. (a) 40%; (b) 4/5; (c) 1/2.
- 8. (a) *c* = 1/6; (b) -1/6; (c) 23/45.
- 9. (a) both zero; (b) no.

10. (a)
$$\hat{\beta} = \frac{\sum y_i \sqrt{x_i}}{\sum x_i}$$
.

D11. (a) test statistic = 0.5, critical value = \pm 1.96, do not reject null;

(b) 0.17; (c) if you don't round intermediate results you'll get a test statistic of 3.612 whereas if you do you'll get 3.62, critical value = \pm 1.96, reject null.

12. (b) 3.6; (c) test statistic = 1.047, critical value = 1.684, do not reject null; (d) 472; (e) test statistic = 2.325, critical value ± 2.000 , reject null.

<u>2013</u>

A1. (a) continuous and differentiable, derivative = 0; (b) continuous but not differentiable.

2. (a)
$$x_1 = \frac{b_1(m - a_2 p_2) + p_1 b_2 a_1}{p_1(b_1 + b_2)}, x_2 = \frac{b_2(m - a_1 p_1) + p_2 b_1 a_2}{p_2(b_1 + b_2)}.$$

3. (a) $y_t = 1.005^t(10100) - 10000, y_t = \pounds 3623$; (b) $1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16}.$

4. (a) Two schools of thought on this one: if you feel that any discussion of definiteness requires the function to be a quadratic form, then $\alpha = 1$, but if you are prepared instead just to require that the function is non-negative everywhere then $\alpha \ge 1$; (b) convex.

B5. (a)
$$\ln w = \frac{Y(1-\delta)+\beta Z}{(1-\alpha)(1-\delta)-\gamma\beta}$$
, $\ln c = \frac{Z(1-\alpha)+\gamma Y}{(1-\alpha)(1-\delta)-\gamma\beta}$; (b) $\frac{(1-\alpha)(1-\delta)-\gamma\beta}{w(1-\delta)}$

(c) $\alpha + \beta = 1$, $\gamma + \delta = 1$, determinant is zero so no solutions or (if $\frac{Y}{Z} = \frac{-\beta}{\gamma}$), infinitely many.

6. (a) homogeneous degree 1; (b) $\frac{dK}{dL} = \frac{-(1-\delta)}{\delta} \left(\frac{K}{L}\right)^{\rho+1}$, isoquants are convex; (c) $\frac{1}{\rho+1}$; (d) straight line, slope $-(1-\delta)/\delta$.

C7. (a) 0.5; (b) (0.4, 0.6) for X = (1,2), (0.4, 0.6) for Y = (1,2); (c) (0.75, 0.25) for X = (1,2); (d) No.

8. (a) 51/990.

9. (a) 5.035; (b) just swap x and y in formulae (c) slope = 0.191, intercept = 11.36.

10. (a) True; (b) True; (c) True.

D11. (a)
$$(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$$
: Expectation = $(\beta, \beta, N\beta)$, Variance = $\left(\frac{\sigma^2}{\sum x_i^2}, \frac{N\sigma^2}{(\sum x_i)^2}, \sigma^2 \sum \frac{1}{x_i^2}\right)$

12. (b) test statistic = 3.73, reject H_0 ; (c) wage = 10.145 + 0.031exper; (d) wage = 8.130 + 0.031exper; (e) 2.015. A1. (a) $e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!}$; (b) $2 + \frac{x}{4} - \frac{x^{2}}{64}$; (c) If you read the question literally: 2.002500± 0.000002, or if they meant you to take an *extra* term for the error then 2.002498438±2x 10^{-9} .

2. (a)(i)
$$b p_t + d p_{t-1} = a + c$$
; (ii) $p^* = \frac{a+c}{b+d}$; (iii) $p_t = \left(\frac{-d}{b}\right)^t p_0 + \frac{a+c}{b+d} \left(1 - \left(\frac{-d}{b}\right)^t\right)$;
(iv) $d < b$; (b)(i) $\frac{dy}{dt} + by = 0$; (ii) $z_t = (z_0 - z_m)e^{-\beta t} + z_m$.
3. (a) $e^5 - e^0$; (b) $\frac{11e^{12}}{9} - \frac{2e^3}{9}$.
4. (a) Min at (4,2), max at (-4, -2); saddles at (4, -2) and (-4,2);
(b) saddle at (0,0), max at $\left(1, -\frac{3}{2}\right)$.

B5. (a)
$$\alpha + \beta \le 1$$
; (b)(i) $C^* = 2(rw)^{\frac{1}{2}}Q^{1/2\alpha}$; (ii) $\frac{dC^*}{dQ} = \frac{(rw)^{\frac{1}{2}}}{\alpha}Q^{\frac{1}{2\alpha}-1}$; (iii) they are equal;
(iv) $C = r\dot{K} + \frac{w}{K}Q^{1/\alpha}$; (v) $K = \left(\frac{w}{r}\right)^{\frac{1}{2}}Q^{1/2\alpha}$.
6. (a) $1 + 2q$, $\frac{\alpha^2}{q} + 1 + q$; (b) $q = \frac{p-1}{2}$; p=35, q=17; (c) $\frac{d\pi^*}{d\alpha} = -2\alpha$; (d) $p = \frac{104 + N}{N + 2}$, $q = \frac{51}{N + 2}$;
(e) $N = 100$, $p = 2$, $q = \frac{1}{2}$; (g) $q = \frac{51}{4}$, $p = \frac{157}{4}$.
C7. (a) 0.6; (b) 0.75; (c) $\frac{3(2)^{n-1}}{5^n}$.
8. (a) $E(X) = \frac{1}{\lambda}$, $E(X^2) = \frac{2}{\lambda^2}$, var $= \frac{1}{\lambda^2}$.
9. (a) 10.7 ± 0.6 ; (b) $Z = 2.05$, reject H_0
10. (a) $\hat{\beta}_0 = 200$, $\hat{\beta}_1 = 0.82$.
D11. (c) $n = 5$: (d) $\frac{11}{2^{10}}$; (e) $(1 - p)^{10} + 10(1 - p)^9 p$, max at $p = 0$.
12. (a) $Z = -1.23$, do not reject H_0 ; (b) $Z = 3.17$, reject H_0 ;

(c) Z=11.7, significantly different from zero.

<u>2015</u>