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MATHEMATICS FOR ECONOMISTS AND STATISTICIANS

This paper consists of two Sections; A and B.

Each Section carries 50% of the total marks.

Candidates may attempt SIX questions from Section A, and THREE ques-
tions from Section B.

Credit will be given for complete answers; answers to individual parts of
questions will gain less than pro rata credit.

Write on one side of the paper only.
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SECTION A

1. Consider the following three vectors in R3

v1(c) =

24 1
c
�4

35 ; v2(c) =
24 1
6
c

35 ; v3(c) =
24 0
1
c

35 ;
where c 2 R.

(a) For what values of c are the three vectors linearly dependent? (You
should �nd two values c1, c2)

(b) For c1 and c2 calculated in (a) �nd a basis for V (ci) = span hv1(ci); v2(ci); v3(ci)i,
i = 1; 2:

2. Consider the following 4� 4 matrix:

A =

2664
1 3 4 0
0 2 0 1
2 1 2 0
0 5 0 3

3775
(a) If

Ax =

2664
1
1
2
1

3775
with x 2 R4, what is x2?

(b) What is the dimension of Col(A)? What is the dimension ofNull(A)?

3. Consider a n� n matrix A. A is idempotent if

AA = A

Show that if A is idempotent, then

(a)
detA 6= 0 if and only if A = I;

where I is the n� n identity matrix.
(b) If A can be written as

A = PDP�1;

where D is a n � n diagonal matrix, then all eigenvalues of A must
be either 0 or 1.
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4. Let f (K;L) be a production function with constant returns to scale, where
K denotes capital, and L denotes labour.

(a) Show that if we scale both input factors up or down by t > 0, the
marginal products of labour and capital remain the same.

(b) Show that
f11 (K;L)K + f12 (K;L)L = 0;

for all K and L.

5.

(a) By considering the Hessian matrix show that xayb is concave if a+b <
1, where x > 0; y > 0; a > 0; b > 0:

(b) Solve the following constrained optimisation problem:

maxx; y �y
s:t: y3 � x2 = 0:

6. Find the speci�c solution for the following di¤erential equations. In each
case, explain what happens to the dependent variables as t �!1.

(a)
�
y =

y

7t2
; y (1) = 1:

(b)
��
y +

�
y = 0; y (0) = 2; y0 (0) = 3:

(c)
�
x =

�
2 5
1 4

�
x; x (0) =

�
0
5

�
:

7. A Pollster wishes to obtain information on intended voting behavior in a
two party system, and samples a �xed number (n) of voters. Let X1,...,Xn
denote the sequence of independent Bernoulli random variables represent-
ing voting intention, where E (Xi) = p, i = 1; ::; n; and X =

Pn
i=1Xi:

(a) Find E (X) and V ar (X).

(b) Instead of �xing the number of individuals to interview, the pollster
now samples N individuals, where N is a discrete random variable
with probability mass function p (n) = P (N = n) :

(TURN OVER for continuation of question 7
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i. Find an expression for the conditional distribution of X given
N = n.

ii. Find E (X j N) and V ar (E (X j N)).
(c) Using the result that for random variables, X and N

V ar (X) = V ar (E(X j N)) + E (V ar (X j N)) ;

show that V ar (X) = p2V ar (N) + p (1� p)E (N).

8. Suppose that X1 and X2 are two random variables with respective means
�1 and �2, and variances, �

2
1 and �

2
2. De�ne the random variables Y1 =

X1 +X2 and Y2 = X1 �X2:

(a) Compute the mean and variance of Y1 assuming that X1 and X2 are
independent.

(b) Show that if X1 and X2 are identically distributed ; then Y1 and Y2
are uncorrelated.

(c) Consider now the case where X1 and X2 are independent and iden-
tically distributed Bernoulli variables with probability 1

2 . Can we
conclude that Y1 and Y2 are independent?

9. Each month an economist chooses between one of three models in making
a prediction. She uses model M1 with probability 0.5, M2 0.25, and M3

0.25. Using M1 there is an 80% chance that the prediction is accurate;
corresponding �gures for M2 and M3 are 40% and 60% respectively.

(a) Find the probability that, in a given month, the prediction is accu-
rate.

(b) Find the probability that the forecast is accurate on at least 2 of 3
consecutive months.

(c) If in a given month the prediction has not been accurate, what model
has she most likely used?

(d) Another economist also makes a forecast every month, and chooses
between the three models with equal probabilities. Find the proba-
bility that the two economists will use the same model at least once
in the next two months.
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SECTION B

1. Consider a symmetric n � n matrix A: A = AT . Assume that A has
n distinct eigenvalues r1; :::; rn with corresponding eigenvectors v1; :::; vn.
Show that

(a) Eigenvectors are mutually orthogonal, i.e.

vi � vj = 0; i 6= j:

(b) There exists an orthogonal matrix P : PTP = I, where I is the n�n
identity matrix, such that

PTAP =

26664
r1 0 ::: 0
0 r2 ::: 0
...

...
. . .

...
0 0 ::: rn

37775 :
(c) For the following matrix A, compute the eigenvalues, eigenvectors

and the matrix P .

A =

24 2 0 �1
0 4 0
�1 0 2

35 :
2. Consider two subspaces U1 and U2 of a vector space V . De�ne the inter-
section and the sum of U1 and U2 by

U1 \ U2 = fu j u 2 U1, u 2 U2g
U1 + U2 = fu1 + u2 j u1 2 U1, u2 2 U2g:

(a) Prove that U1 \ U2 and U1 + U2 both are subspaces of V:
(b) For the following matrix A, what is Null(A) \ Col(A) and what is

Null(A) +Row(A)?

A =

�
2 �1
4 �2

�
(c) Explain why if Ax = b has a solution it will have an a¢ ne subspace

of solutions of dimension 1, where A is the matrix in part (b).

(TURN OVER
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3. Let � (x) be the cumulative distribution function of the standard normal

distribution, i.e. � (x) =
R x
�1

1p
2�
e
�t2
2 dt.

(a) Use L�Hôpital�s rule to show that

lim
x�!�1

x� (x) = 0:

(b) Show that sign
�
d
dx

�
�(x)
�0(x)

��
= sign (�0 (x) + � (x)x), where sign (f (x))

is the sign of f (x).

(c) Use (a) and (b) to show that �(x)
�0(x) is increasing in x over R.

4. Let x denote a consumption bundle, p the price vector, and m the con-
sumer�s income. Let u (x) denote a consumer�s utility function, and u
denote a certain utility level. Let V (p;m) be the indirect utility function,
and E (p; u) the expenditure function. Assume that m = E (p; u).

(a) Let u (x1; x2) = x
1
3
1 x

2
3
2 . Compute V (p;m) and E (p; u) :

(b) For general utility functions, let D (p;m) denote the Mashallian de-
mand function. Show that

D (p;m) = � Vp (p;m)
Vm (p;m)

:

(c) For general utility functions, let � and � denote the Lagrangian multi-
pliers of the utility maximisation and expenditure minimisation prob-
lems, respectively. Show that �� = 1.

5. In seeking to estimate the proportion, P; of vehicles which run on non-
fossil fuels, a student surveys 5000 motorists at random and counts X, the
number of such cars. The students�estimate for P is bP = X=5000:
(a) Prove whether or not bP is a maximum likelihood estimator.

(b) Prove whether or not bP is an unbiased estimator.
(c) Use the central limit theorem to �nd a 95% con�dence interval for P

in terms of bP :
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6. Shirley runs a real estate company. She counts the total number of �ats
that she sells every day, Xi; and the total number of �ats she sells in a
week, X. Suppose that the Xi are i.i.d. random variables with a Poisson
distribution, i.e.

Pr(X1 = x) =
�xe��

x!
; x = 0; 1; :::; E(X1) = �:

(a) Derive the moment generating function for X1 and X.

(b) Show that X has a Poisson distribution with mean 7�.

(c) Shirley�s partners are afraid that the company cannot sell, on average
one house every two days i.e. 0.5 house per day. In the past week
sales were:

i 1 2 3 4 5 6 7
xi 0 1 2 0 3 2 0

Compute Pr (X � 8j� = 0:5). Can Shirley refute her partners�wor-
ries based on this past week�s data?

END OF PAPER
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